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ABSTRACT Several lines of evidence indicate that diet and dietary behaviors can contribute to human cancer risk.
One way that this occurs is through the ingestion of food mutagens. Sporadic cancers result from gene-environment
interactions where the environment includes endogenous and exogenous exposures. In this article, we define
environment as dietary exposures in the context of gene-environment interactions. Food mutagens cause different
types of DNA damage: nucleotide alterations and gross chromosomal aberrations. Most mutagens begin their action
at the DNA level by forming carcinogen-DNA adducts, which result from the covalent binding of a carcinogen or part
of a carcinogen to a nucleotide. However, the effect of food mutagens in carcinogenesis can be modified by heritable
traits, namely, low-penetrant genes that affect mutagen exposure of DNA through metabolic activation and
detoxification or cellular responses to DNA damage through DNA repair mechanisms or cell death. There are some
clearly identified (e.g., aflatoxin) and suspected (e.g., N-nitrosamines, polycyclic aromatic hydrocarbons or
heterocyclic amines) food mutagens. The target organs for these agents are numerous, but there is target-organ
specificity for each. Mutagenesis, however, is not the only pathway that links dietary exposures and cancers. There is
growing evidence that epigenetic factors, including changes in the DNA methylation pattern, are causing cancer and
can be modified by dietary components. Also DNA damage may be indirect by triggering oxidative DNA damage.
When considering the human diet, it should be recognized that foods contain both mutagens and components that
decrease cancer risk such as antioxidants. Thus nutritionally related cancers ultimately develop from an imbalance of
carcinogenesis and anticarcinogenesis. The best way to assess nutritional risks is through biomarkers, but there is
no single biomarker that has been sufficiently validated. Although panels of biomarkers would be the most
appropriate, their use as a reflection of target-organ risk remains to be determined. Also even when new biomarkers
are developed, their application in target organs is problematic because tissues are not readily available. For now
most biomarkers are used in surrogate tissues (e.g., blood, urine, oral cavity cells) that presumably reflect biological
effects in target organs. This article reviews the role of food mutagens in mutagenesis and carcinogenesis and how
their effects are modified by heritable traits and discusses how to identify and evaluate the effects of food
mutagens. J. Nutr. 133: 965S–973S, 2003.
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Foods and dietary behaviors are thought to increase cancer
risk, which is due in part to the consumption of food mutagens.
These mutagens contribute to cancer along the route of ex-
posure (oral cavity, esophagus, gastrointestinal tract) and in
organs that are distant to the route of exposure (e.g., liver).
Although there are some clearly identified food mutagens (e.g.,
aflatoxin) and other suspected mutagens (e.g., N-nitrosamines
or heterocyclic amines), we do not know what if any mutagens
cause cancers that have been associated with different types of

diet (e.g., high fat). On the other side, and not reviewed herein,
are dietary constituents that reduce the risk of cancer, in some
cases by decreasing the effects of food mutagens, and dietary
compounds that might indirectly affect the cellular control of
DNA regulation via methylation.

Sporadic cancers result from gene-environment interactions
where the environment includes endogenous and exogenous
exposures (1,2). In this article, we define environment to in-
clude dietary exposures and the exposures that occur at the
cellular and macromolecular levels. Food mutagens cause dif-
ferent types of DNA damage, namely, nucleotide alterations
and gross chromosomal aberrations. Most mutagens begin their
action at the DNA level by forming carcinogen-DNA adducts
(3–5), which result from the covalent binding of a carcinogen
or part of a carcinogen to a nucleotide. However, the effects
of food mutagens in carcinogenesis can be modified by heritable
traits, namely, low-penetrant genes that affect mutagen expo-
sure of DNA through metabolic activation and detoxification
or cellular responses to DNA damage through DNA repair
mechanisms or cell death.
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This article reviews the role of food mutagens in mutage-
nesis and carcinogenesis and how their effects are modified by
heritable traits; it also discusses how to identify and evaluate
the effects of food mutagens. There are data to indicate that
food mutagens and carcinogens affect specific organs rather
than affecting every organ in the body. Separately foods con-
tain many substances that likely reduce cancer risk, such as
antioxidants or some types of fibers. These are not reviewed
herein, but it should be recognized that nutritionally related
cancers occur through an imbalance of carcinogenesis and
anticarcinogenesis.

Mutagenesis is not the only pathway that links dietary
exposures and cancers. There is growing evidence that epi-
genetic factors including changes in DNAmethylation patterns
are causing cancer (6) and can be modified by dietary com-
ponents (7). Also DNA damage may be indirect by triggering
oxidative DNA damage (8,9).

Mutagenesis and carcinogenesis

Upon entering the body, food mutagens typically undergo
metabolic activation and detoxification by endogenous en-
zymes (10) whose roles are to rid the body of foreign com-
pounds. Sometimes the chemically modified mutagens that
are more reactive (electrophilic) bind to DNA rather than the
excretory carrier molecules. This binding can then cause coding
errors at the time of DNA replication. However, redundant
DNA repair mechanisms exist that can repair DNA adducts
(excision repair), which is aided by cellular processes that
trigger cell-cycle arrest and thereby allow for more time to
repair DNA. These cell-cycle processes are triggered by DNA
damage. If the DNA adducts however are not repaired, they
can cause point mutations, deletions, insertions or gross
chromosomal abnormalities. Not all adducts are promutagenic,
and some sequences are more prone to allowing adduct
formation or mutation. If gross chromosomal abnormalities
occur, then there are DNA repair enzymes (recombination
repair), which are aided by other proteins, that delay the cell
cycle. If the DNA damage persists, the cells undergo cell death
(oncosis or apoptosis) unless there is a selective clonal
advantage.

Some dietary exposures can plausibly modify the effects of
food mutagens. For example, alcoholic beverages induce an
isoform of cytochrome P450 (CYP)2E1,3 which metabolically
activates N-nitrosamines, whereas the ingestion of vitamin C
prevents the formation of N-nitrosamines. Exposure to certain
food mutagens such as polycyclic aromatic hydrocarbons
(PAH) can induce CYP1A1, which then causes increased
metabolic activation of these compounds.

Cancer-related genes can be classified as protooncogenes
and tumor-suppressor genes. The former are normally func-
tioning genes that regulate normal cell growth, replication
and differentiation but contribute to carcinogenesis when they
are mutated in such a way that leads to uncontrolled gene
expression and cellular proliferation. Tumor-suppressor genes
also regulate normal cell growth, replication and differentia-
tion but contribute to carcinogenesis when a mutation leads to
loss of function. More recently cancer-related genes have
been classified as caretaker, gatekeeper and landscaper genes
(11,12). Caretaker genes are responsible for maintaining
genomic integrity (e.g., DNA repair, metabolic activation and

detoxification), and when mutated they increase the probabil-
ity of mutations in other genes. The gatekeeper genes are
responsible for cell-cycle control, signal transduction and re-
plication. When mutated, these genes allow for selective clonal
expansion. Landscaper genes are responsible for providing
signals to adjacent cells. Although the classification of these
genes was originally proposed in the context of high-pene-
trant genes and familial cancer syndromes, the concept is also
applicable to low-penetrant genes and gene-environment
interactions (2). Consideration of the specific genetic functions
and how they are mutated should lead to different paradigms in
cancer risk and statistical models for approaching gene-gene
interactions.

The effects of food mutagens on caretaker and gatekeeper
genes can theoretically be modulated by interindividual vari-
ation in function of any enzyme involved in DNA damage and
response (metabolic activation, detoxification,DNArepair, cell-
cycle control, apoptosis, etc.). For food mutagens that lead
to cancer, interindividual variation is governed by genetic
polymorphisms where the frequency of the genetic variant is
. 1% in the population of interest. Sporadic cancer risk is
usually modified by genetic polymorphisms in low-penetrant
genes (risk of the genetic trait is . 1 but , 2), and the risks
of these genes are more often identified in the context of
exposure and not as a main effect. It is important to realize
that although the increase in cancer risk associated with
polymorphisms in low-penetrant genes is small, the attribut-
able risk in the population is large due to the high frequency
of the variants (2). Most research for genetic susceptibilities
has focused on carcinogen metabolism and detoxification
(13–15), and more recently there has been a focus on DNA
repair (16). Clearly research efforts need to expand toward
the study of gatekeeper and other caretaker genes.

Methods to study food mutagens

This section addresses methods for identifying food
mutagens that might cause cancer in experimental studies
and the use of biomarkers to assess human effects. Establishing
the role of food mutagens in carcinogenesis requires the
availability and interpretation of different experimental and
human experiential evidence, and approaches to assess
causality have been proposed (17). The study of food muta-
gens includes complementary approaches such as chemical
model systems that identify the structure of carcinogens and
their mode of action (18,19), animal and human cell-culture
models that verify the applicability of the chemistry to an in
vivo system (20), animal in vivo models of carcinogenesis
(21,22) and additional epidemiological studies that incorporate
biomarkers identified by using the other methods (1,15). Each
of these has limitations and advantages (Table 1).

The different types of methods for studying food mutagens
must be interpreted in the contexts of one another (23), the
doses used (24) and the target organs (25). For example, the
predictability for human carcinogenesis of any single method
(e.g., in vitro cell culture or experimental animal study) is low,
and the concordance among different experimental systems is
variable. There are significant differences in susceptibility
among species; some are more sensitive than others, so that
extrapolation from animal to human experience can be difficult
(25–28). Importantly, although a study might indicate the
mutagenic potential of a food mutagen, whether it actually
causes mutations and cancer in humans can only be
conclusively demonstrated in humans. Genetically altered cells
and animals might increase the accuracy of predictive
laboratory tests (29).

3 Abbreviations used: ADH, alcohol dehydrogenase; BaP, benzo(a)pyrene;
CYP, cytochrome P450; PAH, polycyclic aromatic hydrocarbon
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High-throughput screening methodologies for the mecha-
nistic and toxicological endpoints are being developed for use in
experimental systems and epidemiological studies (30–32).
High throughput can refer to the ability to identify a large
number of cellular effects in a single experiment or the
application of an assay in a large number of subjects. The new
methods include large-scale genomic screens based on
microarrays (33,34) and proteomic screens based on 2-D gel
electrophoresis with mass spectrometric detection (35,36) or
surface-enhanced laser desorption/ionization (37). The
genomics and proteomic methods are plausibly useful to screen
for toxicological effects and earlier carcinogenic events in vitro
and in in vivo experimental studies (38,39). Some methods can
be applied to large numbers of epidemiological subjects (40).
However, the interpretation of data when there are a large
number of data points for both known and unknown genes or
proteins challenges our current statistical models and requires
novel approaches to the interpretation of data. For example,
the best methods for determining unique patterns of expression
that are representative of a particular toxic effect or cluster-
ing responses that predict a combination of effects are only now
being tested. These methods use either cluster data based on
statistical relationships or biological pathways. Other new
advances are providing researchers with powerful tools for
analysis of diet-related carcinogenic pathways. The combina-
torial synthesis of chemical compounds has tremendously
increased the production of novel chemicals and drugs
including dietary supplements (41–43). These provide new
opportunities to expand cancer research as well as the
understanding of carcinogenesis.

Biomarker assays are frequently used to assess exposure to
food mutagens and how the body responds to those exposures.
Any assay that is performed on a biological fluid or tissue can be
considered a biomarker assay. Importantly exposure in this
context refers to exposure at the cellular and macromolecular
levels rather than what might be in foodstuffs or reflected in
dietary behaviors. An important conceptual approach is to
consider the biologically effective dose of a mutagen (44),

which is a measure of the effect of the mutagen in DNA (i.e.,
carcinogen-DNA adducts, nucleotide alterations, chromo-
somal aberrations) or its surrogate. The biologically effective
dose is a phenotype of a person’s response to the exposure;
namely, the net result of metabolic activation and detoxifica-
tion, a lack of DNA repair and a lack of triggered cell death.
Because epidemiological studies that necessarily rely on
a subject’s recall of dietary behavior present some challenges
to identifying food-mutagen intake, the use of internal
dosimeters and biomarkers can reduce this limitation by
improving exposure classification at the macromolecular level
and ultimately improving risk assessments (45,46). Currently
questionnaires and biomarker assays are mostly complementary
and are most powerful when used together.

The use of biomarkers within epidemiology improves
exposure assessments (e.g., characterizing low-dose exposures
or low-risk populations), provides a relative contribution of
individual chemical carcinogens from complex mixtures (e.g.,
N-nitrosamines) and estimates the total burden of a particular
exposure when there are numerous sources [e.g., benzo(a)py-
rene (BaP) from diet, air, tobacco and occupation] (47). In
general, biomarkers are intuitively more informative and should
be better disease risk markers. However, often these assays are
technically limited and target tissue is difficult to obtain.
Although surrogate markers and the use of surrogate tissues are
popular because they reduce technical challenges, only a small
effort has been undertaken to ensure that the surrogates actually
reflect the effects of interest. Correlative studies are needed, and
therefore assays that directly measure the effects of interest in
target organs also are needed even though these might be
technically limited, labor intensive or used in small numbers of
subjects. As an example, the relationship of surrogate markers
such as carcinogen-DNA adducts in blood to the target organ
has been partially established (48,49). Recently the emphasis on
methodology and quality control in research laboratories that
focus on mutagen-related biomarkers has been improving.

A variety of assays are available for identifying carcinogen-
macromolecular adducts in human tissues (50–56). These

TABLE 1

Methods to assess food mutagens

Method Example Advantage Limitation

In vitro DNA assays Chemical modeling, DNA binding Rapid, inexpensive Provides information only about
chemical structures

In vitro cell-culture testing Salmonella typhimurium (Ames)
mutation assay, HGPRT1

forward mutation assays,
chromosomal aberrations,
unscheduled DNA synthesis,
cell transformation assays,
microarray expression analysis

Rapid results, human cells can
be used, use of genetically
engineered cells provides
functional information, provides
specific information about
site-directed mutagenesis, best
control of experimental
conditions, economical

Uncertain in vitro-to-in vivo
extrapolations, frequent false
positives and negatives,
mutagenicity is not the same as
carcinogenicity, substantial
interlaboratory variation,
complex mixtures difficult to
evaluate

Animal bioassay National Toxicology Program
rodent bioassays, genetically
altered animals

More predictive of human
experience than short-term
tests, elucidates species
differences, can provide
functional relationships to
carcinogenesis

Expensive, doses are higher than
those experienced by humans,
uncertain animal-to-human
extrapolation

Epidemiology Prospective cohort studies,
case-control studies, case-case
comparisons, human
experimental exposure studies

Direct measurement of human
experience, covariates
examined, dose-response data,
now incorporating genetic and
other biomarkers

Insensitive, does not prove
causation, unknown
confounding variables,
biomarker data studies in early
stage of development and
validation

1 HGPRT, Hypoxanthine-guanine phosphoribosyltransferase.
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include the 32P-postlabeling assay/nucleotide chromatography,
immunoassays such as immunohistochemistry, fluorescence
spectroscopy, gas chromatography/mass spectroscopy and
electrical chemical detection. Recent methods take advantage
of new methodologies including radiolabels detectable at very
low doses (56) and fluorescent detectors. Each of these adduct
assays has its usefulness and limitations, and all are challenged
by sensitivity and/or specificity.

Other biomarker assays have been used to assess the
biological consequences of mutagen exposure. A nonspecific
assay is to measure urine mutagenicity, where extracts of
human urine are used in the Salmonella mutation assay. Also
sister chromatid exchanges and chromosomal aberrations can
be measured in cultured lymphocytes, but these are probably
too nonspecific to be useful in assessing dietary effects.

The study of mutations in the p53 tumor-suppressor gene is
uniquely suited for the study of cancer etiology, exposure and
susceptibility (57), because p53 is involved in many cellular
processes including maintenance of genomic stability, pro-
grammed cell death (apoptosis), DNA repair and cell-cycle
control (58,59). The p53 mutation frequency in cancer varies
by organ site and histological subtype (60), which indicates that
cancers occur through different pathways and exposures at the
cellular level. There are several examples of specific carcino-
genic exposures that are linked to cancers via a p53 mutational
mechanism particularly for dietary aflatoxin B1 exposure and
a consistent finding of mutations in the third nucleotide pair of
codon 249 of liver cancers in regions with endemic exposure to
aflatoxin B1 (61,62). Combinations of exposures also can lead
to different outcomes in the same organ site. An interactive
effect of hepatitis B exposure and aflatoxins increase the risk of
mutations (63).

Biomarker assays can be useful in confirming a hypothesis
regarding etiological relationships. For example, although
alcoholic beverages are associated with oral cavity cancers
and weakly with breast cancers (64–66), the carcinogenic agent
remains unknown. Ethanol is oxidized to acetaldehyde, which
is weakly mutagenic. This oxidation is governed by alcohol
dehydrogenases (ADH) and the ADH3 gene is polymorphic. In
different studies, the allele corresponding to increased oxida-
tion capacity was associated with both oral cavity (67) and
breast (68) cancers. Separately a role for oxidative damage in
breast cancer is supported by studies of the manganese

superoxide dismutase gene; polymorphic variants increased
breast cancer risk, which was greatest in persons with low
antioxidant food intake (69).

Examples of biomarkers associated with specific exposures
and target organs are shown in Table 2.

Aflatoxin B1

Studies of aflatoxin B1 exposure have provided a clear
paradigm for a food mutagen related to cancer risk. Although
hepatitis B and C infections carry a higher risk than aflatoxin B1
exposure, both laboratory and epidemiological data exist that
causally establish aflatoxin’s role in liver carcinogenesis (46).
Aflatoxin B1 exposure occurs through the consumption of
mold-contaminated corn and animal feed (70), which can be
transmitted transplancentally (71) and to newborns via breast-
feeding (72). Exposures are low in the U.S.A. but can be high in
China and parts of Africa. Laboratory animal models indicate
that aflatoxins are mutagenic and carcinogenic (46). Epi-
demiological studies in Africa and Asia, where high levels of
exposure occur, link aflatoxin B1 exposure and hepatocellular
carcinomas (63,73–76), and the risk is synergistic with hepatitis
viral infections (63). The mechanism of action for aflatoxin B1
mutagenicity begins with metabolic activation by CYP3A4,
CYP3A5 and/or CYP1A2 (77–81) that forms an exo-8,9-
epoxide and subsequent adduct formation and DNA damage
(82,83). This damage has been shown in vitro to cause guanine
nucleotide substitutions (84) specifically to codon 249 of the
p53 gene (85). Liver cancers from areas with high levels of
aflatoxin contamination almost always have codon-249 p53
mutations, whereas the frequency of this mutation is low in
areas of low contamination and intermediate in areas of inter-
mediate contamination (60,86,87). Interestingly, there seems
to be an interactive effect for increasing p53 mutations in
persons with hepatitis B and coexposure to aflatoxin (74).

Several biomarker assays for aflatoxin exposure have been
developed (46,88). Although it would be preferable to measure
the biologically effective dose in the liver, because this is the
target organ, it is not practical. Thus methods have focused on
blood and urine markers. Levels of aflatoxin adducts vary
among areas of low and high contamination (89). Mea-
surements of the adduct or its metabolite in the urine indicate

TABLE 2

Examples of biomarkers of exposure and susceptibility

Biomarker

Genetic susceptibility Phenotypic biomarker

Carcinogen Target organ
Activating enzyme with
genetic polymorphisms

Detoxifying enzyme with
genetic polymorphisms Adduct p53 Mutation

Aflatoxin B1 Liver CYP3A4,1 CYP3A5,
CYP1A2

Glutathione transferases,
glucuronyl transferases

Adducts in DNA, albumin,
hemoglobin and urine;
urinary metabolites

Codon 249 AGG
to AGT

Polycyclic aromatic
hydrocarbons

Lung, oropharyngeal,
breast, gastro-
intestinal and
genitourinary tracts

CYP1A1, CYP1B1,
epoxide hydroxylase

Glutathione transferases,
glucuronyl transferases

Adducts in DNA, albumin,
hemoglobin; urinary
metabolites

Increased G-to-T
mutations at codons
157, 248, 273

N-nitrosamines Gastrointestinal, lung,
oropharyngeal

CYP2A6, CYP2E1 — O6-methylguanine,
7-methylguanine

—

Heterocyclic amines Colon, breast CYP1A2, NAT12 NAT2 Adducts in albumin, and
DNA adducts

—

1 CYP, cytochrome P450.
2 NAT, N-acetyltransferase.

968S SUPPLEMENT

 by on O
ctober 29, 2008 

jn.nutrition.org
D

ow
nloaded from

 

http://jn.nutrition.org


a dose-response effect for aflatoxin B1 exposure and liver cancer
(46,63). The effect is multiplicative in persons infected with
hepatitis B or C (90,91).

The detoxification of aflatoxin exo-8,9-epoxides by conju-
gation to glutathione has prompted studies of oltipraz as a
chemoprotective agent, because it is an inducer of glutathione
transferase M1 enzyme (92). The preliminary results from a
phase II clinical trial show a significant reduction in the bio-
markers of aflatoxin damage in the oltipraz-treated group (93).

Polycyclic aromatic hydrocarbons

PAH compounds are formed during the incomplete com-
bustion of organic matter. Eleven PAH compounds have
been classified as carcinogenic to laboratory animals (94), and
PAH compounds are human carcinogens (95). It is estimated
that our diet provides 3 mg PAH/d (96,97), which compares to
an exposure of 2–5 mg PAH/d per pack of cigarettes in a regular
smoker. Thus dietary exposure can be significant in non-
smokers and even exceed the level of regular smokers.
Corroborative data that indicate that PAH exposure from diet
is important are the findings that the intake of charcoal-broiled
meat is more correlated to blood PAH DNA adducts than
smoking (98,99).

PAH food exposure and cancer risk have received little
attention. The effects of PAH exposure, which are measured
mostly in other settings (e.g., tobacco smoking and the work-
place), indicate that the target organs for PAH compounds are
the lung, oropharynx, breast and genitourinary and gastroin-
testinal tracts. Thus biomarkers for the assessment of PAH
would focus on studies in these organs or surrogate tissues for
these organs.

In laboratory animal studies, diets with PAH consistently
induce foregut tumors and also can induce lung tumors (100–
105). In humans there is some evidence for association of
dietary PAH exposure with colon cancer (106,107). Animal
(108,109) and human studies (110) suggest that dietary PAH is
distributed to other organs besides the locally exposed tissues,
so it is plausible to consider that dietary PAH might contribute
to lung or breast cancer risk, for example. Although the dietary
contribution of PAH to the total body burden may be sizeable
(111,112), the ubiquitous presence of PAH in the environment
(113) and the presence of other carcinogens in the same foods
(114,115) makes the interpretation of epidemiological studies
of cancer risk due to dietary PAH difficult. It may be possible to
distinguish PAH exposures in diet from smoking by measuring
biomarkers specific to each [e.g., simultaneous measurement
of 1-hydroxypyrene to evaluate total PAH intake (116) and
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) to
evaluate the contribution due to smoking (51)]. In addition,
dietary PAH is invariably a complex mixture of compounds
with hard-to-predict metabolic and carcinogenic consequences.

Benzo(a)pyrene is the best-characterized PAH compound
available from the diet. The bay-region diol epoxide binds to
DNA mostly as the N2-deoxyguanosine adduct (117). The
metabolic activation by the CYP1A (118) and CYP1B
(119,120) classes of enzymes are required for adduct forma-
tion. BaP adducts can be quantified by several sensitive
methods (56,121,122). Other methods exist for detecting PAH
metabolites [e.g., urinary BaP-tetrol (123) and 3-hydroxy-
benzo(a)pyrene (124)]. BaP adducts estimate the biologically
effective dose and suggest a link to cancer risk in the lung
(125,126); they are also associated with site-specific hotspot
mutations in the p53 tumor-suppressor gene (60,127) and
mutations observed in lung cancer of smokers (128). Similar

evidence for dietary PAH-associated cancer should be sought,
for example, in gastrointestinal cancers.

N-Nitrosamines

Humans are exposed to N-nitroso compounds in diet
from a variety of cured meats and fish products (129,130).
N-nitrosamines can be formed in vivo during simultaneous
ingestion of nitrite or nitrogen oxides and a nitrosatable sub-
strate such as a secondary amine (131). DietaryN-nitrosamines
have been linked to esophageal and other gastrointestinal
cancers (130,132); for example, N-nitrosamines are considered
an important carcinogen in parts of China and Japan. Biomarker
studies show that N-nitrosamine adducts are higher in these
parts of the world compared to low-N-nitrosamine areas (133,
134). Although tobacco smoke and tobacco-specific nitro-
samines cause lung cancer (51,135), dietary N-nitrosamines
might also contribute to lung cancer (136–138).

Experimental animal models strongly support the carcino-
genic properties of dietary N-nitrosamines (130). In fact, there
is a large concordance between animal species and strains albeit
with different organ specificity, type of compound and dose
(139). Cancer of the lung, liver, kidney, mammary gland,
stomach, pancreas, bladder or esophagus has been observed
(140). These sites also are considered to be the target organs in
humans, and so biomarker assays are best suited for them.

The N-nitrosamines are a large group of compounds with
a common carcinogenic mechanism. N-nitrosodimethylamine
frequently is formed as a result of dietary exposures. N-nitroso-
dimethylamine undergoes enzymatic hydroxylation and sub-
sequent hydrolysis to an aldehyde and a monoalkylnitrosamine
that rearranges and releases a carbocation that is reactive
toward DNA bases (141,142). The hydroxylation is catalyzed
mainly by CYP2E1 (143,144), but other cytochrome P450
isoforms including CYP2A6 have been implicated (14,145).

The O6-methylguanine is mostly responsible for the
mutagenicity and carcinogenicity of alkylating agents
(146,147). The O6-methylguanine leads to GC!AT trans-
itions in cell-culture (148) and animal (149) models if not
repaired by the O6-methylguanine methyltransferase (150,
151). A specific mutation was observed in codon 12/13 of
ras oncogene in animals exposed to alkylating agents (152)
[later evidence suggests that this may have been due to clonal
selection rather than mutation (153)] and in human gastro-
intestinal tumors of unknown etiology (154). Although the
O6-methylguanine is a promutagenic lesion, it is technically
easier to measure the 7-methylguanine, which is not pro-
mutagenic, as a surrogate marker for exposure and genetic
susceptibility, because the 7-methylguanine occurs at levels
;10-fold higher. Human studies of N-nitrosamine adducts in
different tissues and the use of susceptibility markers should
help elucidate the risks of N-nitrosamine exposures.

Heterocyclic amines

Heterocyclic amines are formed during high-temperature
cooking by pyrolysis of proteins, amino acids or creatine (155)
and can be present in human diet in substantial concentrations
depending on cooking habits (156,157). Heterocyclic amines
are clearly bioavailable from normal human diet (158). The
proposed bioactivation pathway consists of N-hydroxylation by
CYP1A2 (159) and subsequent esterification (160,161). The
nitrenium ion is the likely ultimate carcinogen binding to
the DNA bases (162). Metabolic activation by CYP1A2 was
documented in people after extensive characterization in vitro
and in animal models as is reviewed elsewhere (163,164). The
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activation by CYP1A2 can be induced in humans fed a diet rich
in heterocyclic amines (114) and is affected by polymorphisms
of phase II activating enzymes (161,165–168). The most active
area of research for heterocyclic amines focuses on colon and
breast cancer.

The parent heterocyclic compounds, their metabolites and
biologically effective doses determined by DNA and protein
adducts have been measured in human studies using acceler-
ator mass spectrometry (55,169–171) and a variety of other
very sensitive analytical methods (55,172,173). There is also
good epidemiological evidence correlating the consumption of
foods containing a high content of heterocyclic amines with
colon cancer (174–176) although this correlation is not con-
sistent (177). It appears that the mutations in the APC and p53
tumor-suppressor genes suggest a connection to the exposure
to heterocyclic amines (178), but further research is needed.
Although the elimination of heterocyclic amines from the diet
seems impractical, exposures can be reduced by cooking foods
at lower temperatures (156,179). Possible chemopreventive
interventions based on current understanding of the carcino-
genic mechanism have been also proposed (180,181).

Perspectives

New tools are allowing researchers to address many
questions regarding food mutagens. These studies are being
performed in the context of biologically based hypotheses. The
biologically effective dose is an important measurement for
assessing subsequent cellular outcomes including cancer. Cur-
rently assays that measure biologically effective doses are not
sufficiently developed, but it is possible to investigate questions
such as the measurement of dietary exposures in relation to
nondietary exposures. Newer methods are now more sensitive
and specific, so that they are becoming technically simpler and
allowing for the use of smaller amounts of target tissue. In this
way, the relationship between surrogate and target-organ
effects can be addressed. But to date there is no single bio-
marker that has been sufficiently validated for the assessment of
nutritional risk. A panel of biomarkers that reflects several
gene-environment interactions would likely be more predictive
of risk, but this needs to be determined. When possible, target-
organ studies will provide the most direct evidence for the role
of food mutagens in carcinogenesis. However, this is problem-
atic, because tissues are usually not available from living people.

Newer technologies also will allow investigators to measure
many types of effects simultaneously. Although the costs of
these methods (such as microarray expression approaches) are
prohibitive for large numbers of assays, the ability to observe
many changes in a single experiment can be very powerful.
Similarly some array methods can be applied to a large number
of subjects, and once established (e.g., a tumor array), the
results can be rapidly determined for a large number of makers.
The current challenges include the lack of approaches to make
meaningful interpretations of the data, and the varying of the
data-interpretation methods depending on whether the data
was collected with a priori hypotheses or through screening
methods. Although these newer methods may be more po-
werful than other methods, the need for careful validation of
the biomarker is still great.

This article has focused on the most commonly studied food
mutagens, but many others exist in food as do agents that
reduce cancer risk. The integrated consideration of all of these
remains problematic because of the complex nature of the
exposure and the documentation of dietary habits, and each of
our research methods has strengths and limitations. The new
methods for assessing biomarkers will not replace our estab-

lished epidemiological methods such as questionnaires and
measurements of mutagens in foodstuffs, but they will be
complementary.

Biomarkers that assess the effects of food mutagens range
from markers of susceptibility to phenotypic markers of effect
(p53 mutations, overexpression of enzymes, etc.). Employing
multiple biomarkers within well-designed epidemiological
studies can be useful in identifying new food mutagens or the
role of previously established mutagens.
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