
348 Ann Ist super sAnItà 2007 | Vol. 43, no. 4: 348-361

r
e

se
A

r
c

h
 f

r
o

m
 a

n
Im

A
l
 t

e
st

In
g

 t
o

 c
l

In
Ic

A
l
 e

x
p

e
r

Ie
n

c
e

Summary. Fruit and beverages such as tea and red wine represent the main sources of polyphenols. 
Despite their wide distribution, the healthy effects of dietary polyphenols have come to the atten-
tion of nutritionists only in the last years. the main factor responsible for the delayed research on 
polyphenols is the variety and the complexity of their chemical structure. emerging findings suggest 
a large number of potential mechanisms of action of polyphenols in preventing disease, which may 
be independent of their conventional antioxidant activities. to establish evidence for the effects of 
polyphenol consumption on human health and to better identify which polyphenols provide the 
greatest effectiveness in disease prevention, it is first of all essential to determine the nature and the 
distribution of these compounds in our diet, and secondly to better know their bioavailability.
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Riassunto (Polifenoli, fonti alimentari e biodisponibilità). La frutta e le bevande, come il tè e il vino 
rosso, costituiscono le principali fonti di polifenoli per l’uomo. a causa della varietà e della comples-
sità della loro struttura chimica, gli effetti benefici dei polifenoli contenuti nella dieta sono stati este-
samente studiati solo negli ultimi anni. recentemente è stato evidenziato che gli effetti protettivi dei 
polifenoli su importanti patologie umane, come malattie cardiovascolari e cancro, non sono dovuti 
esclusivamente alle loro proprietà antiossidanti, ma anche alla loro capacità di modulare molteplici 
attività cellulari. Per chiarire quali siano gli effetti dei polifenoli e per meglio identificare quali tra gli 
innumerevoli composti polifenolici siano più efficaci nella prevenzione di alcune patologie umane, 
è necessario sia esaminare la loro natura e distribuzione nella nostra dieta, sia conoscere meglio la 
loro biodisponibilità.

Parole chiave: polifenoli, dieta, biodisponibilità.
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INTRODUCTION
Polyphenols are the most abundant antioxidants 

in our diet and are widespread constituents of fruits, 
vegetables, cereals, olive, dry legumes, chocolate 
and beverages, such as tea, coffee and wine. Despite 
their wide distribution, the healthy effects of dietary 
polyphenols have come to the attention of nutritionists 
only in the last years. the main factor responsible for 
the delayed research on polyphenols is the variety and 
the complexity of their chemical structure.

as antioxidants, polyphenols may protect cell con-
stituents against oxidative damage and, therefore, 
limit the risk of various degenerative diseases associ-
ated to oxidative stress. experimental studies, in fact, 
strongly support a role of polyphenols in the preven-
tion of cardiovascular disease, cancer, osteoporosis, 
diabetes mellitus and neurodegenerative disease [1]. 
In particular, it has been shown that the consumption 
of polyphenols limits the development of atheroma-
tous lesions, inhibiting the oxidation of low density 
lipoprotein [2-5], which is considered a key mecha-
nism in the endothelial lesions occurring in athero-
sclerosis.

However, emerging findings suggest a variety of po-
tential mechanisms of action of polyphenols in pre-
venting disease, which may be independent of their 
conventional antioxidant activities. Furthermore, pro-
oxidant effects of polyphenols have been described 
[6], having opposite effects on basic cell physiological 
processes: if as antioxidants they improve cell survival, 
as pro-oxidant they may induce apoptosis and block 
cell proliferation [7]. On the other hand, accumulating 
evidence indicates that polyphenols might exert sev-
eral other specific biological effects such as the  inhibi-
tion or reduction of different enzymes, among which 
telomerase [8] cycloxygenase [9, 10], lipoxygenase [11, 
12], and the interaction with signal transduction path-
ways and cell receptors [13-15]. Moreover polyphe-
nols can affect caspase-dependent pathways [16, 17], 
cell cycle regulation [18] and platelet functions [19]. It 
is mainly by virtue of these properties that they exert 
their protective effects and receive more and more at-
tention as potential therapeutic agents against several 
chronic degenerative diseases [20, 21].

Much of the evidence on the protective effects of 
polyphenols is derived from experiments performed  

Indirizzo per la corrispondenza (Address for correspondence): Massimo D’archivio, centro Nazionale per la Qualità degli alimenti 
e per i rischi alimentari, Istituto Superiore di Sanità, Viale regina elena 299, 00161 rome, Italy. email: maxdar@iss.it.



349polyphenols, dIetAry sources And bIoAVAIlAbIlIty

in vitro or in animal models, and moreover by using 
concentrations much higher than those generally con-
tained in human diet. However the number of human 
studies investigating the protective effects of polyphe-
nols has rapidly increased over the last decade. 

to establish conclusive evidence for the effective-
ness of polyphenols in disease prevention  and hu-
man health improvement, it is essential to determine 
the nature and distribution of these compounds in 
our diet and to better identify which of the hundred 
of existing polyphenols are likely to provide the 
greatest effects. Furthermore, it is crucial the un-
derstanding of the factors involved in polyphenol 
release from the foods in which they are contained, 
their extent of absorption and their fate in the or-
ganism, in a word their “bioavailability”, a term 
originally used in pharmacology to define the con-
cept of the “rate and extent to which a drug reaches 
its site of action” [22]. 

It is worth of note that bioavailability appears to 
differ greatly among the various polyphenols, and 
the most abundant ones in our diet are not neces-
sarily those that have the best bioavailability profile. 
another difficulty depends on the fact that the ac-

tive compounds may not be the native polyphenols 
found in foods, which are generally tested in vitro 
studies, but more likely their, often unknown, me-
tabolites [23, 24].

the knowledge of the bioavailability of the various 
dietary polyphenols will help us to identify those most 
likely able to exert protective healthy effects and will 
allow a more correct evaluation of the real polyphenol 
intake. 

 CLASSIFICATION OF POLYPHENOLS 
AND THEIR DISTRIBUTION IN FOODS
Polyphenols are common constituents of foods of 

plant origin; they comprise a wide variety of mole-
cules that have a polyphenol structure (i.e. several  hy-
droxyl groups on aromatic rings), but also molecules 
with one phenol ring, such as phenolic acids and 
phenolic alcohols. Polyphenols are divided into sev-
eral classes according to the number of phenol rings 
that they contain and to the structural elements that 
bind these rings to one another. the main groups of 
polyphenols are: flavonoids, phenolic acids, phenolic 
alcohols, stilbenes and lignans (Figure 1). 
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Flavonoids 
Flavonoids share a common carbon skeleton of 

diphenyl propanes, two benzene rings (ring a and 
B) joined by a linear three-carbon chain. the central 
three-carbon chain may form a closed pyran ring 
(ring c) with one of the benzene rings.

Flavonoids are themselves divided into 6 subclass-
es, depending on the oxidation state of the central 
pyran ring: flavonols, flavones, flavanones, isofla-
vones, anthocyanidins and flavanols (catechins and 
proanthocyanidins) (Figure 2). More than 4000 fla-
vonoids have been identified in plants, and the list is 
constantly growing [25]. this is because of the oc-
currence of numerous substitution patterns in which 
primary substituents (as hydroxyl group) can them-
selves be substituted (i.e., additionally glycosylated 
or acylated), sometimes yielding highly complex 
structures.

Flavonols have a double bond between c2 and c3, with 
a hydroxyl group in the c3-position (Figure 2). they 
represent the most ubiquitous flavonoids in foods, 
with quercetin as the more representative com-
pound. the main sources of flavonols are onions 
(up to 1.2 g/kg fresh wt), curly kale, leeks, broccoli, 
and blueberries (Table 1). tea and red wine also 
contain up to 45 mg and 30 mg flavonols/L respec-

tively. It is important to note that flavonols biosyn-
thesis is stimulated by light, so they accumulate in 
the outer and aerial tissue of fruits. Interestingly, 
differences in concentration can exist among fruits 
on the same tree and even between different sides 
of a single piece of fruit, depending on exposure to 
sunlight [26]. 

Flavones have a double bond between c2 and c3, 
and are the less common flavonoids. Parsley and cel-
ery represent the only important edible sources of 
flavones. the skin of fruits contains large quantities 
of polymethoxylathed flavones: for example in the 
skin of mandarin their content is up to 6.5 g/L of 
essential oil of mandarin.

Flavanones are characterized by the presence of 
a saturated three-carbon chain and an oxygen at-
om in the c4. they are generally glycosylated by a 
disaccharide in c7. Flavanones are present in high 
concentrations only in citrus fruit, but they are al-
so found in tomatoes and certain aromatic plants 
such as mint. the main aglycones are naringenin in 
grapefruit, hesperetin in oranges, and eriodictyol in 
lemons. Orange juices contain 470-761 mg/L of hes-
peridin and 20-86 mg/L of narirutin [27]. the solid 
parts of citrus fruit, in particular the white spongy 
portion (albedo) and the membranes separating the 
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Table 1 | Bioavailability of polyphenols or polyphenol-containing foods

Polyphenols Source
Quantity of
polyphenol
ingested (mg)

Maximum
concentration
in plasma (mM)

Urinary 
excretion

(% of intake)
Ref.

Anthocyanins

Cyanidine 3-glucoside Orange juice (1 L) 71 mg Cy-3-glc 0.002 [43]

Malvidin 3-glucoside Red wine (500 mL) 68 mg Mal-3-glc 0.001 0.016 6h [132]

Malvidin 3-glucoside Red grape juice (500 mL) 117 mg Mal-3-glc 0.003 0.019 6h [132]

Cyanidine 3-glucoside Red fruit extract (1.6 g) 2.7 mg Cy-3-glc/kg bw 0.03 [133]

Flavanols

Epigallocatechin gallate Green tea infusion (5 g) 105 mg 0.13-0.31 [130]

Catechin Red wine (120 mL) 34 mg 0.072 [134]

Epicatechin Chocolate (80 g) 137 mg 0.26 [135]

Catechin Pure compound 0.36 mg/kg bw 0.14-0.49 1.2-3 [136]

Epigallocatechin gallate Pure compound 50-1600 mg 0.28-7.4 [137]

Epigallocatechin gallate Green tea extract 110-328 mg 0.26-0.7 [138]

Catechins Black tea 140 mg 0.34 [139]

Procyanidin B1 Grapeseed extract 18 mg 0.011 [140]

Flavanones

Hesperidin Orange juice 61 mg 0.48 4.1 [141]

Hesperetin Orange juice 110-220 mg 0.46-1.28 4.1-6.4 [123]

Naringenin Orange juice 22.6-45 mg 0.06-0.2 7.1-7.8 [123]

Naringenin Grapefruit juice 199 mg 5.99 30.2 [142]

Naringenin Pure compound 135 mg 7.4 5.8 [143]

Hesperetin Pure compound 135 mg 2.7 3.3 [143]

Flavonols

Quercetin Apples 107 mg 0.3 3.5 [131]

Quercetin Onions 100 mg 7.6 6.4 [83]

Quercetin 4’-glucoside Pure compound 100 mg 7.0 4.5 [83]

Quercetin Buckwheat tea 200 mg 2.1 1.0 [83]

Quercetin Pure rutin 200 mg 1.1 0.9 [83]

Isoflavones

Daidzein Soy milk 108 mg 0.47 37.3 [144]

Genistein Soy milk 102 mg 0.41 20.2 [144]

Glycitein Soy milk 114 mg 0.09 [144]

Daidzein Pure compound 50 mg 0.76 [121]

Genistein Pure compound 50 mg 1.26 [121]

Glycitein Pure compound 25 mg 0.72 [121]

Daidzein Soy extract 0.28-0.84 mg/kg bw 1.7-9.0 26-42 [145]

Genistein Soy extract 2-16 mg/kg bw 3.4-25.4 9.5-14 [145]

Daidzein Soy nuts 6.6-26.4 mg 0.4-1.65 63-44 [146]

Genistein Soy nuts 9.8-39.2 mg 0.59-2.21 25.2-15.8 [146]

Hydroxybenzoic acids

Gallic acid Pure compound 50 mg 1.8GA+2.3 MeGA [147]

Gallic acid Assam black tea 50 mg 1.8GA+2.3 MeGA 36.4 [147]

Gallic acid Red wine (300 mL) 4 mg 1.8GA+2.3 MeGA 39.6 [148]

Hydroxycinnamic acids

Chlorogenic acid Coffee (200 mL) 96 mg 0.5 caffeic acid [149]

Caffeic acid Red wine (200 mL) 1.8 mg 0.06 [150]

Caffeic acid Red wine 0.06 mg 0.08 [151]

Hydrocinnamic acids Apple cider (1.1 L) 15 mg 0.43 [152]

GA: gallic acid;  MeGA: methylgallic acid; bw: body weight. 
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segments, have a very high flavanone content; this is 
the reason way the whole fruit may contain up to 5 
times as much as a glass of orange juice.

Isoflavones have structural similarities to estro-
gens, i.e. hydroxyl groups in the c7 and c4, posi-
tions, like estradiol molecule. they can bind to es-
trogen receptors and are classified thus as phytoes-
trogens. Isoflavones are contained almost exclu-
sively in leguminous plants. Soya and its processed 
products represent the main source of  isoflavones, 
and contain the three main molecules (genistein, 
daidzein and glycitein) that occur as aglycones or, 
more often, as glucose-conjugate forms. Soybeans 
contain between 140 and 1530 mg isoflavones/kg 
fresh wt, and soy milk may contain between 12 and 
130 mg/L [28, 29].

Isoflavones are sensitive to heat and are often hydro-
lyzed to glycosides during industrial processing and 
storage, such as the production of soya milk [29].

Anthocyanins are water-soluble pigments, respon-
sible for most of the red, blue, and purple colours 
of fruits, vegetables, flowers, and other plant tissues 
or products [30]. they occur primarily as glycosides 
of their respective aglycones form, called anthocya-
nidins, with the sugar moiety mainly attached at the 
3-position on the c-ring or at the 5, 7-position on 
the a-ring. Glycosylation at the 3’-, 4’-, 5’-position 
on the B-ring, although very rare, has also been ob-
served [31]. the sugar moieties may also be acylat-
ed by a range of aromatic or aliphathic acids; the 
most common acylating agents are cinnamic acids. 
anthocyanins are widely distributed in the human 
diet: they are found in red wine, certain varieties of 
cereals, and certain vegetables (cabbage, beans, on-
ions, radishes), but they are most abundant especially 
in fruit. Food contents are generally proportional to 
colour intensity and reach values up to 2-4 g/kg fresh 
wt in blackcurrants or blackberries; the contents in-
crease as the fruit ripens. anthocyanins are found 
mainly in the skin, except for some red fruits (cher-
ries and strawberries) in which they also occur in the 
flesh. Wine contains up to 350 mg anthocyanins/L, 
and these anthocyanins are transformed into various 
complex structures as the wine ages [32, 33]. 

Flavanols contain a saturated three-carbon chain 
with a hydroxyl group in the c3. they exist in both 
the monomer and the polymer form (catechins 
and proanthocyanidins respectively). Unlike other 
classes of flavonoids, flavanols are not glycosylated 
in foods. the main representative flavanols in fruit 
are catechin and epicatechin, whereas gallocatechin, 
epigallocatechin, and epigallocatechin gallate are 
found especially in tea [34, 35]. 

catechins are found in many fruits such as apri-
cots (250 mg/kg fresh wt) and cherry (250 mg/kg 
fresh wt). Green tea (up to 800 mg/L), and choco-
late (up to 600 mg/L), are by far the richest sources 
of  catechins, which are also present in red wine (up 
to 300 mg/L). 

Proanthocyanidins, also known as condensed tan-
nins, are dimers, oligomers, and polymers of cate-

chins. It is very hard to value the proanthocyanidin 
content of foods because proanthocyanidins have a 
wide range of structures and molecular weights: for 
example in cider apples, the degree of polymeriza-
tion ranges from 4 to 11 [36]. the only available data 
concern dimers and trimers, which are as abundant 
as the catechins themselves [37]. Proanthocyanidins 
are responsible for the astringent character of fruit 
(grapes, apples, berries, etc.) and beverages (wine, 
cider, tea, beer etc) and for the bitterness of choco-
late [38]. It is important to note that this astringency 
changes over the course of maturation and often 
disappears when the fruit reaches ripeness. 

Phenolic acids 
these compounds could be divided in two classes: 

derivatives of benzoic acid and derivatives of cin-
namic acid (Figure 1).

The hydroxybenzoic acids, such as gallic acid 
and protocatechuic acid, are found in very few 
plants eaten by humans; this is the reason why 
they are not currently considered to be of  great 
nutritional interest. their content of  edible plants 
is generally very low, except for certain red fruits, 
i.e. blackberries which contain up to 270 mg/kg 
fresh wt [39]. tea is an important source of  gallic 
acid: tea leaves may contain up to 4.5 g/kg fresh 
wt of  gallic acid [40]. raspberry contain up to 100 
mg/kg fresh weight of  protocatechuic acid, while 
in olive oil its concentration is about 0.22 mg/kg 
[39, 41, 42]. However it should be considered that 
protocatechuic acid concentration in vivo could be 
higher than the simple quantity ingested, because 
this compound may represent the major human 
metabolite of  anthocyanins, such as cyanidin-3-
glucoside. In fact it has been recently retrieved in 
human serum and feces after ingestion of  cyani-
din-rich food [43]. 

The hydroxycinnamic acids consist chiefly of cou-
maric, caffeic and ferulic acid, that are rarely found 
in the free form. the bound forms are glycosylated 
derivatives or esters of quinic, shikimic or tartaric 
acid. caffeic and quinic acid combine to form chlo-
rogenic acid, which is found in many types of fruit 
and in high concentrations in coffee (a single cup 
may contain  up to 350 mg of chlorogenic acid) [44]. 
Blueberries contain 2 g hydroxycinnamic acids/kg 
fresh wt [41].

caffeic acid is the most abundant phenolic acid, 
representing between 75% and 100% of the to-
tal hydroxycinnamic acids contents in most fruits: 
kiwis contain up to 1 g caffeic acid/kg fresh wt. 
Hydroxycynnamic acids are present in all part of 
fruit, although the highest concentrations are seen in 
the outer part of ripe fruit. concentration decrease 
during the course of ripening, but the total quantity 
increases as the fruit increases in size. 

Ferulic acid is the most abundant phenolic acid 
found in cereal grains: its content of wheat grain is 
about 0.8-2 g/kg dry weight, which may represent up 
to 90% of total polyphenols [45, 46]. 
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Phenolic alcohols
tyrosol (4-hydroxyphenylethanol) and hydroxy-

tyrosol (3,4-dihydroxyphenylethanol) are the main 
phenolic alcohols; they are contained mainly in extra 
virgin olive oil (40.2 and 3.8 mg/kg respectively) [42]. 
tyrosol is also present in red and white wines and beer 
[47], while hydroxytyrosol is also found in red wine 
and is additionally produced in vivo after red wine 
ingestion [48]. the concentration of total phenols in 
extra virgin olive oil has a mean value for commercial 
olive oil of approximately 180 mg/kg [49]. the phenol 
concentration in olive oil depends on variety, climate, 
area of growth, latitude, and ripeness of the olive [50]. 
Despite the wide body of evidence linking the in vitro 
properties of olive oil phenolics with positive health 
outcomes [51, 52], there are limited data on the ab-
sorption and excretion of these compounds [53, 54]. 
In part, this could be due to the low concentrations 
of such constituents and, accordingly, the difficulty 
in detecting the presumptively low concentrations of 
these compounds in biological systems.

Stilbenes
Low quantities of stilbenes are present in the hu-

man diet, and the main representative is resveratrol 
(Figure 1), that exists in both cis and trans isomeric 
forms, mostly in glycosylated forms. It is produced by 
plants in response to infection by pathogens [55] or to 
a variety of stress conditions [56]. It has been detected 
in more than 70 plant species, including grapes, ber-
ries and peanuts. the fresh skin of red grapes is par-
ticularly rich in resveratrol (50-100 g/kg net weight) 
[57] which contributes to a relatively high concentra-
tion of resveratrol in red wine and grape juice (up to 
7 mg aglycones/L and 15 mg glycosides/L in red wine) 
[58, 59]. extensive data provide evidence for anticar-
cinogenic effects of resveratrol  [60-62].

Lignans
Lignans are produced by oxidative dimerization of 

two phenylpropane units (Figure 1); they are mostly 
present in nature in the free form, while their glyco-
side derivatives are only a minor form. Linseed rep-
resents the main dietary source, containing up to 3.7 
g/kg dry wt of secoisolariciresinol  [63]. Intestinal 
microflora metabolizes lignans to enterodiol and en-
terolactone. the low quantities of lignans normally 
contained in human diet do not account for the con-
centrations of the metabolites enterodiol and entero-
lactone measured in plasma and urine. thus, there 
are certainly other lignans of plant origin, precursors 
of enterodiol and enterolactone, that have not been 
identified yet [64]. the interest in lignans and their 
synthetic derivatives  is  growing because of poten-
tial applications in cancer chemotherapy and various 
other pharmacological effects [65].

POLYPHENOL CONTENT IN HUMAN DIET
as stated above, fruit, tea and red wine constitute the 

main sources of polyphenols. Some of them are spe-

cific to particular foods (flavanones in citrus fruit, iso-
flavones in soya, phloridzin in apples), whereas others, 
such as quercetin, are found in all plant products (fruit, 
vegetables, cereals, leguminous plants, tea, wine, etc.). 
Generally, foods contain complex mixtures of polyphe-
nols. For instance, apples, that represent a rare exam-
ple of food for which accurate data on its polyphenol 
composition are available, contain flavanol monomers 
or oligomers, chlorogenic acid and small quantities of 
other hydroxycinnamic acids, several quercetin glyco-
sides, 2 glycosides of phloretin and anthocyanins. the 
polyphenol profiles of all varieties of apples are prac-
tically identical, but concentrations may significantly 
differ among different varieties (from 0.1 to 10 g total 
polyphenols/kg fresh wt [36, 66].

On the other hand, for many plant products, 
the polyphenol composition is much less known. 
Furthermore numerous factors, such as ripeness at the 
time of harvest, environmental factors, and storage, 
may affect the polyphenol content of plants.

environmental factors, such as climatic (sun expo-
sure, rainfall) or agronomic (different type of culture, 
fruit yield per tree, etc.) play a key role in determining 
the polyphenol content. In particular, the exposure 
to light has a considerable effect on most flavonoids. 
the degree of ripeness differently affects the concen-
trations and proportions of the various polyphenols: 
generally phenolic acid concentrations decrease dur-
ing ripening, whereas anthocyanin concentrations in-
crease. Storage may also affect the content of polyphe-
nols that are easily oxidized, leading to the formation 
of more or less polymerized substances, which alter 
particularly the colour and the organoleptic charac-
teristics of fruits. cold storage, in contrast, did not 
affect the content of polyphenols [67, 68]. 

Polyphenol content of foods is also influenced by 
the methods of culinary preparation; simple peel-
ing of fruits and vegetables can significantly reduce 
polyphenol content, because these substances are of-
ten present in high concentrations in the outer parts. 
cooking, also, have a remarkable effect: for example 
onions and tomatoes lose about 75% of their initial 
quercetin content after boiling for 15 min, 65% after 
cooking in a microwave oven, and 30% after frying. 
Potatoes contain up to 190 mg chlorogenic acid/kg 
mainly in the skin [69]; so an extensive loss occurs 
during cooking, and no remaining phenolic acids 
were found in French fries [44].  

BIOAVAILABILITY OF POLYPHENOLS
Bioavailability can be defined in different ways. 

the commonly accepted definition of bioavailability 
is the proportion of the nutrient that is digested, ab-
sorbed and metabolised through normal pathways. 
consequently, it is not only important to know how 
much of a nutrient is present in specific food or di-
etary supplement, but even more important is to 
know how much of that is bioavailable [70].

the metabolism of several polyphenols is now well 
understood. Generally, the aglycones can be absorbed 
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from the small intestine; however most polyphenols 
are present in food in form of esters, glycosides, or poly-
mers that cannot be absorbed in the native form. 
Before the absorption, these compounds must be 
hydrolyzed by intestinal enzymes or by the colonic 
microflora. During the course of the absorption, 
polyphenols undergo extensive modification; in fact 
they are conjugated in the intestinal cells and later 
in the liver by methylation, sulfation and/or glucuro-
nidation (see below). as a consequence, the forms 
reaching the blood and tissues are different from 
those present in food and it is very difficult to iden-
tify all the metabolites and to evaluate their biologi-
cal activity [71-74]. 

the main goal of bioavailability studies is to de-
termine which are the better absorbed polyphenols, 
which are the active metabolites and which polyphe-
nols lead to the formation of the active metabolites. 
the chemical structure of polyphenols, more than 
the concentration, determines the rate and extent of 
absorption and the nature of the metabolites circu-
lating in the plasma. the most common polyphe-
nols in our diet are not necessarily those leading to 
the highest concentrations of active metabolites in 
target tissues; consequently the biological properties 
of polyphenols greatly differs from one polyphenol 
to another. 

evidence, although indirect, of their absorption 
through the gut barrier is given by the increase in the 
antioxidant capacity of  the plasma after the con-
sumption of polyphenols-rich foods [75, 76]. More 
direct evidence on the bioavailability of phenolic 
compounds has been obtained by measuring their 
concentration in plasma and urine after the ingestion 
of either pure compounds or foodstuffs with known 
content of the compounds of interest [2, 53, 77].

In Table 1 are shown the data from the most recent 
and relevant studies that investigated the extent of 
polyphenol absorption in humans, after the inges-
tion of a single dose of polyphenols provided as pure 
compound, plant extract or whole food/beverage. 
these studies show that the quantities of polyphe-
nols found intact in urine vary from one phenolic 
compound to another. Inter-individual variations 
have also been observed [78], probably due to the 
different composition of the colonic microflora 
which can differently affect their metabolism. 

the identification and the quantification of me-
tabolites represent an important field of research; for 
example specific active metabolites, such as equol, 
enterolactone and enterodiol, are produced by the 
colonic microflora. equol appears to have phytoes-
trogenic properties even greater than those of the 
original isoflavone [79]; enterolactone and enterodiol, 
produced from linseed, have agonistic or antagonistic 
effects on estrogens [80, 81]. Furthermore, it is to un-
derline that a great inter-individual variability exists 
in producing these active metabolites, depending on 
the composition of the intestinal flora [79, 82].

the flavonol quercetin is one of the most exten-
sively studied polyphenols. It serves as a good ex-

ample because its metabolism in humans is well 
understood; the flavonol conjugates that have been 
identified in plasma and urine from persons fed 
quercetin-containing foods are not those found in 
food. For example, plasma samples from volunteers 
receiving quercetin orally (as an onion meal, buck-
wheat tea, or pure quercetin, quercetin-4’-glucoside, 
quercetin-3-glucoside, or quercetin-rutinoside sup-
plements) contained conjugated forms of quercetin 
but not quercetin glucosides, quercetin rutinoside, 
or quercetin aglycone [71, 83-85].

Intestinal absorption 
In foods, all flavonoids except flavanols exist in gly-

cosylated forms. the fate of glycosides in the stom-
ach is not clear yet. Most of the glycosides probably 
resist acid hydrolysis in the stomach and thus ar-
rive intact in the intestine [86] where only aglycones 
and few glucosides can be absorbed. experimental 
studies carried out in rats [87, 88] showed that the 
absorption at gastric level is possible for some fla-
vonoids, such as quercetin, but not for their glyco-
sides. Moreover it has been recently shown that, in 
rats and mice, anthocyanins are absorbed from the 
stomach [89-91]. 

However most of the polyphenols are present in 
food as esters, glycosides or polymers, that cannot 
be absorbed in the native form. therefore these sub-
stances must be hydrolyzed by intestinal enzymes, 
such as β-glucosidases and lactase-phlorizin hydro-
lase, or by the colonic microflora, before they can be 
absorbed [92, 93]. 

Glycosylation influences absorption, but generally 
does not influence the nature of the circulating me-
tabolites. Intact glycosides of quercetin, daidzein and 
genistein were not recovered in plasma or urine after 
their ingestion as pure compounds or from complex 
food [85, 94]. anthocyanins represent an exception, 
in fact, intact glycosides are the most representative 
circulating forms. the explanation for this may lie 
in the instability of the aglycone forms or in specific 
mechanisms of absorption or metabolism for an-
thocyanins [95, 96]. However, recently Felgines et al. 
[97] identified glucuronides and sulfates of anthocy-
anins in human urine. Glycosylation of resveratrol 
is known to protect it from oxidative degradation, 
therefore glycosylated resveratrol is more stable and 
more soluble and readily absorbed in the human 
gastrointestinal tract [98]. 

On the other hand, quercetin glucosylation facili-
tates its absorption; in fact the efficiency of querce-
tin glucosides absorption is higher than that of the 
aglycone itself [99]. It was suggested that glucosides 
could be transported into enterocytes by the sodium-
dependent glucose transporter SGLt1 [100], and 
then hydrolyzed by a cytosolic β-glucosidase [92]. 
However the effect of glucosylation on absorption is 
less clear for isoflavones than for quercetin [24].

Proanthocyanidins differ from most of other plant 
polyphenols because of their polymeric nature and 
high molecular weight. this particular feature should 
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limit their absorption through the gut barrier, and oli-
gomers larger than trimers are unlikely to be absorbed 
in the small intestine in their native forms [101]. 

Hydroxycinnamic acids, when ingested in the free 
form, are rapidly absorbed by the small intestine and 
are conjugated (in particular glucuronidated) as the 
flavonoids are [44, 102].  However these compounds 
are naturally esterified in plant products, and this 
impairs their absorption because intestinal mucosa, 
liver and plasma do not possess esterases capable of 
hydrolyzing chlorogenic acid to release caffeic acid 
[103, 104], and hydrolysis can be performed only by 
the colonic microflora [103,105].

the polyphenols that are not absorbed in the small 
intestine reach the colon, where the microflora hydro-
lyze glycosides into aglycones and extensively metab-
olize the aglycones into various aromatic acids [106]. 
aglycones are split by the opening of the heterocycle 
at different points, depending on their chemical struc-
ture, and thus produce different acids that are further 
metabolized to derivatives of benzoic acid. 

Intestinal microflora affects the metabolism of 
isoflavones glucosides, since they are hydrolyzed to 
aglycones or transformed into active metabolites, 
such as equol from daidzein [107, 108]. 

Mechanisms of conjugation and plasma transport
Once absorbed, polyphenols are subjected to the 

conjugation: this process, that mainly includes meth-
ylation, sulfation, and glucuronidation, represents a 
metabolic detoxication process, common to many 
xenobiotics, that facilitates their biliary and urinary 
elimination by increasing their hydrophilicity. 

catechol-O-methyl transferase catalyzes the trans-
fer of a methyl group from S-adenosyl-L-methionine 
to polyphenols such as quercetin, luteolin, caffeic 
acid, catechins and cyanidin [96]. the methylation 
generally occurs in the c3’-position of the polyphe-
nol, but it could occur in the c4’-position: in fact 
a notable amount of 4’-methylepigallocatechin was 
detected in human plasma after tea ingestion [109, 
110]. catechol-O-methyl transferase activity is high-
est in the liver and the kidneys, although it is present 
in a number of tissues [111, 112].

Sulfotransferases catalyze the transfer of a sulfate 
moiety from 3’-phosphoadenosine-5’-phosphosulfate 
to a hydroxyl group on various substrates, among 
which polyphenols. the sulfation occurs mainly in 
the liver, but the position of sulfation for polyphenols 
have not been clearly identified yet [111, 113].

UDP-glucuronosyltransferases are membrane-
bound enzymes located in the endoplasmic reticulum 
in many tissues, which catalyze the transfer of a glu-
curonic acid from UDP-glucuronic acid to polyphe-
nols as well as to steroids, bile acids and many dietary 
constituents. Glucuronidation occurs in the intestine 
and in the liver, and the highest rate of conjugation is 
observed in the c3-position  [114-116].

the relative importance of these three types of con-
jugation appears to vary according to the nature of 
the substrate and the dose ingested. the balance be-

tween sulfation and glucuronidation of polyphenols 
also seems to be affected by species and sex [117]. 

the conjugation mechanisms are highly efficient, 
and free aglycones are generally either absent, or 
present in low concentrations in plasma after con-
sumption of nutritional doses; an exception are 
green tea catechins, whose aglycones can constitute 
a significant proportion of the total amount in plas-
ma  (up to 77% for epigallocatechin gallate) [118]. 

It is important to identify the circulating metabo-
lites, including the nature and the positions of the 
conjugating groups on the polyphenol structure, be-
cause the positions can affect the biological proper-
ties of the conjugates [119]. However few data on 
the proportions of the various type of conjugates 
and the percentages of free forms in plasma are 
available  [74, 109, 120-124]. 

Polyphenol metabolites circulate in the blood 
bound to proteins, in particular albumin repre-
sents the primary protein responsible for the bind-
ing. the affinity of  polyphenols for albumin varies 
according to their chemical structure [125, 126]. 
the binding to albumin may have consequences 
for the rate of  clearance of  metabolites and for 
their delivery to cells and tissues. It is possible that 
the cellular uptake of   metabolites is proportional 
to their unbound concentration. Finally, it is still 
unclear if  the polyphenols have to be in the free 
form to exert their biological activity, or the albu-
min-bound polyphenols can exert some biological 
activity, as it has been recently demonstrated for 
quercetin [127].

Plasma concentrations
the concentrations of polyphenols reached after 

their consumption vary highly according to the nature 
of the polyphenol and the food source. In Table 1 data 
of the most relevant bioavailability studies of vari-
ous classes of polyphenols in humans are shown. 
Moreover the same table indicates the source of 
polyphenol, the quantity of polyphenol ingested, 
the maximum concentration in plasma and the 
urinary excretion when available. the plasma con-
centrations of intact flavonoids rarely exceed 1µM 
and the maintenance of a high concentration of the 
polyphenols in plasma requires repeated ingestion 
over time [128]; in fact the maximum concentrations 
are most often reached 1-2 h after ingestion [129, 
130], except those polyphenols which require to be 
degraded prior the absorption [131].

Tissue uptake  
Polyphenols are able to penetrate tissues, particu-

larly those in which they are metabolized such as 
intestine and liver. Determination of  the bioavail-
ability of  polyphenol metabolites in tissues may 
be much more important than is the knowledge of 
their plasma concentrations. However data are still 
very scarce, not only in humans but even in ani-
mals, since few studies reported data on polyphe-
nol concentrations in human tissues. two studies 
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measured phytoestrogens and tea polyphenols in 
human prostate tissue. the first study showed sig-
nificantly lower prostatic concentrations of  genis-
tein in men with benign prostatic hyperplasia than 
in those with a normal prostate, whereas plasma 
genistein concentrations were higher in men with 
benign prostatic hyperplasia [153]. the second one 
showed that tea polyphenols are bioavailable in hu-
man prostate: at the end of  the daily consumption 
of  1.42 L of  green tea or black tea for 5 days, in 
prostate tissue samples epigallocatechin, epicate-
chin, epigallocatechin gallate, epicatechin gallate 
reached concentrations ranging from 21 to 107 
pmol/g tissue [154]. 

to determine the systemic bioavailability of cur-
cumin in colorectal tissue, twelve patients with con-
firmed colorectal cancer received oral curcumin at 
0.45, 1.8 or 3.6 g per die for 7 days prior to surgery. 
the concentrations of curcumin in normal and 
malignant colorectal tissue of patients consuming 
3.6 g daily of curcumin were 12.7 ± 5.7 and 7.7 ± 
1.8 nmol/g tissue, respectively [155]. another study 
showed that equol concentrations in women, who in-
gested isoflavones, were higher in breast tissue than 
in serum, whereas genistein and daidzein were more 
concentrated in serum than in breast tissue [156]. 

these few studies underline that plasma concen-
trations of polyphenols are not directly correlated 
with concentrations in target tissues. Moreover, the 
distribution between blood and tissues differs be-
tween the various polyphenols.

Excretion
Polyphenols and their derivatives are eliminated 

chiefly in urine and bile. extensively conjugated me-
tabolites are more likely to be eliminated in the bile, 
whereas small conjugates, such as monosulfates, are 
preferentially excreted in urine.

the total amount of metabolites excreted in urine 
is roughly correlated with maximum plasma concen-
trations. Urinary excretion percentage is quite high 
for flavanones from citrus fruit (4-30% of intake) [78, 
123, 142, 157], and for isoflavones (16-66% for daid-
zein and 10-24% for genistein) [73, 158, 159], while for 
flavonols accounts for 0.3-1.4% of the ingested dose 

of quercetin and its glycosides [83, 100, 131]. Urinary 
recovery is 0.5-6% for some tea catechins [160], 2-10% 
for red wine catechin [161], and up to 30% for cocoa 
epicatechin [162], while, it ranges from 5.9% to 27% 
for caffeic and ferulic acids [104, 163]. 

these percentages may be very low for other polyphe-
nols, such as anthocyanins (0.005-0.1% of intake) [96, 
132, 164, 165]. However the low bioavailability of an-
thocyanins, could be only apparent since they exist in 
a number of different molecular structures and exists 
a number of potential metabolites that can be gener-
ated [166]. Furthermore, certain metabolites may still 
be unidentified as a result of analytic difficulties. It 
has been shown that all the metabolites of the straw-
berry anthocyanins were very unstable and extensively 
degraded when urine samples were frozen [97]. a use-
ful approach could be the use of isotopically labelled 
compounds. 

CONCLUSIONS
Fruit and beverages such as tea and red wine repre-

sent the main sources of polyphenols, but vegetables, 
leguminous plants, and cereals are also important 
sources. the healthy effects of polyphenols depend 
both on their intake and bioavailability. the concept 
of bioavailability integrates several variables, such 
as intestinal absorption, metabolism by the micro-
flora, intestinal and hepatic metabolism, nature of 
circulating metabolites,  binding to albumin, cellular 
uptake, accumulation in tissues, and biliary and uri-
nary excretion. the main difficulty is to integrate all 
the informations and relating the variables to health 
effects at the organ level. 

Since the evidence of therapeutic effects of dietary 
polyphenols continues to accumulate, it is becoming 
more and more important to understand the nature 
of absorption and metabolism in vivo. Moreover the 
identification and measurement of the physiologic 
polyphenol metabolites represent a key prerequisite 
for the understanding of the role of dietary polyphe-
nols in human health.

Submitted on invitation.
Accepted on 18 October 2007.
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